
EPFL CS 214 Software Construction Fall 2024 - Clément Pit-Claudel

Practical engineering II
Webapps

CS-214 - 11 Nov 2024
Clément Pit-Claudel

EPFL CS 214 Software Construction Fall 2024 - Clément Pit-Claudel

Quick
announcements

find-lazy callback
cancelled to give you time
(good luck with CompArch!)

Debrief for week 8
is up, with laziness tips

Signal-processing lecture
is up as a literate program

Final exam arrangements
are still being confirmed

Unguided lab teams
are due this Friday

Unguided lab instructions
are up!

https://cs-214.epfl.ch/lectures/audio/

EPFL CS 214 Software Construction Fall 2024 - Clément Pit-Claudel

Planning ahead for the webapp lab

Topic: Multi-user webapps
Teams: 3-4 people (not 2!)
Steps:

● Register a team (Week 9)
● Write a proposal (Week 10)
● Implement (Week 10-13)
● Submit code (Week 13)
● Get a checkoff (Week 14)

Training: webapp-rps

EPFL CS 214 Software Construction Fall 2024 - Clément Pit-Claudel

● Structure of a webapp

● Library intro and demo

● User stories

● Requirements

● Logic

● UI

● Tests

This week:

Webapps
Learning objectives:

Decompose multi-user
applications into states,

views, and events.

Implement interactive UIs.

Test complex sequences of
events.

EPFL CS 214 Software Construction Fall 2024 - Clément Pit-Claudel

Structure of a webapp

EPFL CS 214 Software Construction Fall 2024 - Clément Pit-Claudel

Demo

● TicTacToe

● Memory / Concentration

EPFL CS 214 Software Construction Fall 2024 - Clément Pit-Claudel

Part I: User stories

EPFL CS 214 Software Construction Fall 2024 - Clément Pit-Claudel

Part II: Requirements

● States, actions, views

● Client and Server interfaces

EPFL CS 214 Software Construction Fall 2024 - Clément Pit-Claudel

Part III: Logic

● Transitions

EPFL CS 214 Software Construction Fall 2024 - Clément Pit-Claudel

Part IV: UI

● Text

● HTML

EPFL CS 214 Software Construction Fall 2024 - Clément Pit-Claudel

Part V: Tests

EPFL CS 214 Software Construction Fall 2024 - Clément Pit-Claudel

This lab:
(Complex) integration tests
● Multiple functions

● Indirect tests (views+events)

test(“play once”):
 val st = transition(
 init(UIDS), Move(0, 1))
 val vw = project(st)(UID0)
 assertEq(vw.playerId, UID1)
 (0 to 3).forall: r =>
 (0 to 3).forall: c =>
 assert(…vw.board(r, c)…)
)

How do you test that?

Most other labs:
Unit test
● One function at a time

● Single input, single output

test(“play once”):
 assertEq(
 update(State(…), 0, 1),
 State(board = …,
 playerId = UID1)
)

EPFL CS 214 Software Construction Fall 2024 - Clément Pit-Claudel

This lab:
(Complex) integration tests
● Multiple functions

● Indirect tests (views+events)

test(“decode-encode”):
 assertEq(
 xyz,
 decode(encode(xyz))
)
)

How do you test that?

Most other labs:
Unit test
● One function at a time

● Single input, single output

test(“encode”):
 assertEq(
 encode(…),
 Obj(“abc” -> …, “def” -> …)
)

● Will this work if you use arrays or classes instead
of Vectors and case classes?

● What kind of bugs will this fail to catch?

EPFL CS 214 Software Construction Fall 2024 - Clément Pit-Claudel

Part VI (time permitting)

Looking around the library

EPFL CS 214 Software Construction Fall 2024 - Clément Pit-Claudel

Tips to be successful

● For webapp-rps
○ Do the exercises
○ Look around (Wires.scala)
○ Write your own tests

● For the unguided lab
○ Don’t skip webapp-rps
○ Review this lecture
○ Plan and communicate (plan first, code second)
○ Need proposal tips? Ask in person

EPFL CS 214 Software Construction Fall 2024 - Clément Pit-Claudel

Practice: Design an online card game

● States
Playing, Finished
+ Game-specific (Jass: Bidding, Tarot: Écart…)

● Transition function
Playing → Playing, Playing → Finished
+ Game-specific ones (Bidding → Playing…)

● Events
Bid, Pass, PlayCard

● Views
Game phase, individual hand

● Projection function
Hide other players’ cards

EPFL CS 214 Software Construction Fall 2024 - Clément Pit-Claudel

Practice: Design an online card game

● States
Playing, Finished
+ Game-specific (Jass: Bidding, Tarot: Écart…)

● Transition function
Playing → Playing, Playing → Finished
+ Game-specific ones (Bidding → Playing…)

● Events
Bid, Pass, PlayCard

● Views
Game phase, individual hand

● Projection function
Hide other players’ cards

