Practical engineering Il

EPFL CS 214 Software Construction Fall 2024 - Clément Pit-Claudel

Webapps

CS-214 - 11 Nov 2024
Clement Pit-Claudel

2)2)" [2]2]
RRBGERH
DREB0E
Yv|2|%|e[2]2]
2]z2]e|#|a][2
ZRle@ v

find-lazy callback
cancelled to give you time
(good luck with CompArch!)

Debrief for week 8
is up, with laziness tips

Signal-processing lecture
Qu ick is up as a literate program

annou ncements Final exam arrangements

are still being confirmed

Unguided lab teams
are due this Friday

Unguided lab instructions
are up!

EPFL CS 214 Software Construction Fall 2024 - Clément Pit-Claudel

https://cs-214.epfl.ch/lectures/audio/

Planning ahead for the webapp lab

Topic: Multi-user webapps
Teams: 3-4 people (not 2!)
Steps:

® Register ateam (Week 9)
Write a proposal (Week 10)
Implement (Week 10-13)
Submit code (Week 13)
Get a checkoff (Week 14)

Training: webapp-rps

EPFL CS 214 Software Construction Fall 2024 - Clément Pit-Claudel

This week:

Webapps

Learning objectives:

Decompose multi-user
applications into states,
views, and events.

Implement interactive Uls.

Test complex sequences of
events.

EPFL CS 214 Software Construction Fall 2024 - Clément Pit-Claudel

Structure of a webapp
Library intro and demo
User stories
Requirements

Logic

Ul

Tests

Structure of a webapp

EPFL CS 214 Software Construction Fall 2024 - Clément Pit-Claudel

Demo
e TicTacToe

e Memory / Concentration

EPFL CS 214 Software Construction Fall 2024 - Clément Pit-Claudel

Part I: User stories

EPFL CS 214 Software Construction Fall 2024 - Clément Pit-Claudel

Part ll: Requirements
e States, actions, views

e Client and Server interfaces

EPFL CS 214 Software Construction Fall 2024 - Clément Pit-Claudel

Part lli: Logic

e Transitions

EPFL CS 214 Software Construction Fall 2024 - Clément Pit-Claudel

Part IV: Ul

o Jext

e HTML

EPFL CS 214 Software Construction Fall 2024 - Clément Pit-Claudel

Part V: Tests

EPFL CS 214 Software Construction Fall 2024 - Clément Pit-Claudel

How do you test that?

Most other labs:
Unit test

® Onefunctionatatime

e Single input, single output

test(“play once”):

assertEq(
update(State(..), 0, 1),
State(board = ..,
playerId = UID1)
)

EPFL CS 214 Software Construction Fall 2024 - Clément Pit-Claudel

This lab:
(Complex) integration tests

e Multiple functions

e Indirect tests (views+events)

test(“play once”):
val st = transition(
init(UIDS), Move(0, 1))
val vw = project(st)(UIDO)
assertEq(vw.playerId, UID1)
(0 to 3).forall: r =
(0 to 3).forall: c =
assert(..vw.board(r, c)..)

How do you test that?

Most other labs:
Unit test

® Onefunctionatatime

e Single input, single output

test(“encode”):
assertEq(
encode(..),
Obj(“abc” — .., “def” -

)

)

This lab:
(Complex) integration tests

e Multiple functions

e Indirect tests (views+events)

test(“decode-encode”):
assertEq(
Xyz,
decode(encode(xyz))
)
)

e Will this work if you use arrays or classes instead
of Vectors and case classes?

e What kind of bugs will this fail to catch?

Part VI (time permitting)

Looking around the library

EPFL CS 214 Software Construction Fall 2024 - Clément Pit-Claudel

Tips to be successful

e Forwebapp-rps
o Do the exercises
o Lookaround (Wires.scala)
o Write your own tests
e Forthe unguided lab
o Don’tskipwebapp-rps
o Review this lecture
o Plan and communicate (plan first, code second)
o Need proposal tips? Ask in person

EPFL CS 214 Software Construction Fall 2024 - Clément Pit-Claudel

Practice: Design an online card game

® States

® Transition function

® Events
e Views

e Projection function

EPFL CS 214 Software Construction Fall 2024 - Clément Pit-Claudel

Practice: Design an online card game

® States
Playing, Finished
+ Game-specific (Jass: Bidding, Tarot: Ecart...)

® Transition function
Playing » Playing, Playing = Finished
+ Game-specificones (Bidding » Playing...)
® Events
Bid, Pass, PlayCard
e Views
Game phase, individual hand

e Projection function
Hide other players’ cards

EPFL CS 214 Software Construction Fall 2024 - Clément Pit-Claudel

